
Index-Based Intimate-Core Community
Search in Large Weighted Graphs

Longxu Sun , Xin Huang , Rong-Hua Li , Byron Choi , and Jianliang Xu

Abstract—Community search that finds query-dependent communities has been studied on various kinds of graphs. As one instance of

community search, intimate-core group (community) search over a weighted graph is to find a connected k-core containing all query nodes

with the smallest group weight. However, existing state-of-the-art methods start from themaximal k-core to refine an answer, which is

practically inefficient for large networks. In this paper, we develop an efficient framework, called local exploration k-core search (LEKS), to

find intimate-core groups in graphs.We propose a small-weighted spanning tree to connect query nodes, and then expand the tree level by

level to a connected k-core, which is finally refined as an intimate-core group. In addition, to support the intimate group search over large

weighted graphs, we develop a weighted-core index (WC-index) and two newWC-index-based algorithms for expansion and refinement

phases in LEKS. Specifically, we propose aWC-index-based expansion to efficiently find a candidate graph of intimate-core group,

leveraging on a two-level expansion of k-breadth and 1-depth.We propose two graph removal strategies: coarse-grained refinement is

designed for large graphs to delete a batch of nodes in a few iterations; fine-grained refinement is designed for small graphs to remove

nodes carefully and achieve high-quality answers. Extensive experiments on real-life networkswith ground-truth communities validate the

effectiveness and efficiency of our proposedmethods.

Index Terms—Graph mining, weighted graphs, k-core, community search

Ç

1 INTRODUCTION

GRAPHS widely exist in social networks, biomolecular
structures, traffic networks, world wide web, and so on.

Weighted graphs have not only the simple topological struc-
ture but also edge weights. The edge weight is often used to
indicate the strength of the relationship, such as interval in
social communications, traffic flow in the transportation net-
work, carbon flow in the food chain, and so on [1], [2], [3].
Weighted graphs provide information that better describes
the organization and hierarchy of the network, which is help-
ful for community detection [3] and community search [4],
[5], [6], [7]. Community detection aims at finding all commu-
nities on the entire network, which has been studied a lot in
the literature. Different from community detection, the task
of community search finds only query-dependent communi-
ties, which has a wide application of disease infection con-
trol, tag recommendation, and social event organization [8],
[9]. Recently, several community search models have been
proposed in different dense subgraphs of k-core [10], [11]
and k-truss [7], [12].

As a notation of dense subgraph, k-core requires that
every vertex has k neighbors in the k-core. For example,
Fig. 1a shows a graph G. Subgraphs G1 and G2 are both

connected 3-cores, in which each vertex has at least three
neighbors.K-core has been popularly used inmany commu-
nity search models [8], [13], [14], [15], [16], [17]. Recently,
Zheng et al. [9] proposed one problem of intimate-core group
search inweighted graphs as follows.

Motivating Example. Consider a social network G in
Fig. 1a. Two individuals have a closer friendship if they
have a shorter interval for communication, indicating a
smaller weight of the relationship edge. The problem of inti-
mate-core group search aims at finding a densely-connected
k-core containing query nodes Q with the smallest group
weight as an answer. For Q ¼ fv8; v10g and k ¼ 3, the inti-
mate-core group is shown in Fig. 1b with a minimum group
weight of 13.

This paper studies the problem of intimate-core group
search in weighted graphs. Given an input of query nodes in
a graph and a number k, the problem is to find a connected
k-core containing query nodes with the smallest weight.
With the consideration of edge weight, this problem can dis-
cover a community personalized related to query nodes,
which has intimate internal connections and high cohesive-
ness. In real life, the intimate-core group search has a wide

Fig. 1. An example of intimate-core group search in graph G for Q ¼
fv8; v10g and k ¼ 3.
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range of applications, such as collaboration group search [9],
tag recommendation [8] and infectious disease control [9].

In the literature, existing solutions proposed in [9] find
the maximal connected k-core and iteratively remove a
node from this subgraph for intimate-core group refine-
ment. However, this approach may take a large number of
iterations, which is inefficient for big graphs with a large
component of k-core. Therefore, we propose a solution of
local exploration to find a small candidate k-core, which
takes a few iterations to find answers. To further speed up
the efficiency, we build a k-core index, which keeps the
structural information of k-core for fast identification. Based
on the k-core index, we develop a local exploration algorithm
LEKS for intimate-core group search. Our algorithm LEKS
first generates a tree to connect all query nodes, and then
expands it to a connected subgraph of k-core. Finally, LEKS
keeps refining candidate graphs into an intimate-core group
with small weights. We propose several well-designed strat-
egies for LEKS to ensure the fast-efficiency and high-quality
of answer generations.

Over the conference version [18] of this manuscript, we
further investigate the problem of intimate-core group search
and propose efficient index-based algorithms in large
weighted graphs in Section 5. Themotivation is that the exist-
ing index proposed k-core index in Section 4.1 keeps no
records of the important information of edge weights. To this
end, we propose a new data structure of Weighted-Core
index (WC-index), which keeps the node corenesses and edge
weights. For each vertex, WC-index sorts its neighbors in the
increasing order of their edge weights from low to high. This
index is simple but particularly useful to speedup the tree-to-
graph expansion and intimate-core refinement phases. The
basic tree-to-graph strategy expands from nodes in the tree to
all their neighbors, whichmay construct a large-size graph. It
requires a large number of deletions and can influence the
efficiency of the refinement. Also, the ignoring of edgeweight
leads to a large groupweight of the candidate graph. To over-
come the drawbacks, we design a two-levelWC-index-based
expansion strategy consists of k-breadth expansion and 1-
depth expansion. Integrating both methods, it constructs a
candidate graph with both small size and small group
weight. For the refinement phase, we propose a minimal-
weight-based removal order to identify nodes with weak
relationships to the graph. Moreover, we design a coarse-
grained binary deletion strategy for large graphs to improve
efficiency. We also propose a fine-grained deletion strategy
for small graphs that finally constructs a high-quality com-
munity with a small weight.

We conduct extensive experiments of effectiveness and
efficiency evaluations of our algorithms on large real-life
datasets of weighted graphs with ground-truth communi-
ties. First, we compare an existing method ICG-M, LEKS
methods, and ourWC-index-basedmethod on weighted net-
works. We find that our methods always have higher effi-
ciency and better effectiveness than ICG-M. Second, our
proposed index is compact and useful. The WC-index-based
algorithm is highly efficient especially on large graphs. Last
but not least, the quality evaluations on ground-truth com-
munities confirm that our proposed WC-index-based
method achieves higher-quality communities than state-of-
the-art methods of LEKS [18] and ICG-M [9].

Contributions. Our main contributions of this paper are
summarized as follows.

� We investigate and tackle the problem of intimate-
core group search in weighted graphs, which has
wide applications on real-world networks. The prob-
lem is NP-hard, which brings challenges to develop
efficient algorithms.

� We develop an efficient local exploration framework
of LEKS based on the k-core index for intimate-core
group search. LEKS consists of three phases: tree
generation, tree-to-graph expansion, and intimate-
core refinement.

� In the phase of tree generation, we propose to find a
seed tree to connect all query nodes, based on two
generated strategies of spanning tree and weighted
path respectively. Next, we develop the tree-to-graph
expansion, which constructs a hierarchical structure
by expanding a tree to a connected k-core subgraph
level by level. Finally, we refine a candidate k-core to
an intimate-core group with a small weight. During
the phases of expansion and refinement, we design a
protection mechanism for query nodes, which pro-
tects critical nodes to collapse the k-core.

� We design a useful index, named WC-index, which
keeps the node corenesses and edgeweights in graphs.
Based on WC-index, we propose several improved
strategies to speedup the expansion and refinement
phases. We develop a WC-index-based expansion
algorithm using a two-level expansion of k-breadth
and 1-depth, which can find a small candidate graph
efficiently. Moreover, we develop a WC-index-based
refinement algorithmusing a hybrid removal strategy.
It performs the coarse-grained refinement over large
graphs, which deletes a batch of nodes in a few itera-
tions. It performs the fine-grained refinement over
small graphs, which removes nodes carefully and
achieve high-quality answers.

� Our experimental evaluation demonstrates the effec-
tiveness and efficiency of our LEKS algorithms on
large weighted graphs with ground-truth communi-
ties. We show the superiority of our methods in find-
ing intimate groups with smaller weights, against
the state-of-the-art methods [9], [18].

Roadmap. The rest of the paper is organized as follows.
Section 2 reviews the previous work related to ours.
Section 3 presents the basic concepts and formally defines
our problem. Section 4 introduces our index-based local
exploration approach LEKS. Section 5 proposes a WC-index
and two new algorithms of WC-index-based expansion and
WC-index-based refinement. Section 6 presents the experi-
mental evaluation. Finally, Section 7 concludes the paper.

2 RELATED WORK

Our work is related to the topics of community search, com-
munity detection, and minimum subgraph mining.

Community Search. In the literature, numerous studies
have been investigated community search based on various
kinds of dense subgraphs, such as k-core [10], [11], k-truss
[7], [12] and clique [5], [19]. Community search has been
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also studied on many labeled graphs, including weighted
graphs [9], [24], [25], influential graphs [14], [23], and key-
word-based graphs [13], [22], [26]. The additional informa-
tion sometimes provides to nodes or to edges. Besides, the
containing constraint is given one or more query nodes and
requires them included in the community [13], [22]. For
example, [15] studies the community search problem with
multiple query nodes using the k-core model. However,
this work is to query communities on simple unweighted
graphs, whichmay ignore some useful information. [30] is to
find k-truss communities on attributed graphs, the node in
the graph has one or more keywords. Table 1 compares dif-
ferent characteristics of existing community search studies
and ours in terms of dense subgraph models, graph types,
search algorithms, query nodes, and problem hardness.

Community Detection. Community detection aims to
determine all densely-connected communities in the entire
network [27]. There exist various studies of community
detection in the literature. Zhang et al. study the community
detection on graphs with node features [28]. Li et al. use an
embedding approach to solve community detection prob-
lems in attributed graphs [27]. [29] aims to find hierarchy
community structures in attributed graphs. There are many
applications about community detection, such as disease
module identification in protein–protein interaction net-
works [30], discover multistage video clusters with related
topics on Youtube [31] and so on.

Minimum Subgraph Mining. Minimum subgraph mining
investigates various problems of finding the minimum sub-
graph satisfying the given objectives/constraints of dense
subgraphs and communication costs. The problem of k-core
minimization [15], [16], [17], [21] aims to find a minimal con-
nected k-core subgraph containing query nodes. Barbieri
et al. proved that it is NP-Hard [15]. [15] proposed a con-
nected k-core index and local search methods. [16] used KC-
Edge method by greedy deleting edges from the graph. [17]
defined Shapley value to measure the joint effect of edges to
choose priority deleted edges. The minimumwiener connec-
tor problem is finding a small connected subgraph to mini-
mize the sum of all pairwise shortest-path distances between
the discovered vertices [32].

Different from all the above studies, our work aims at
finding an intimate-core group containing multiple query
nodes in weighted graphs. We propose fast algorithms for

intimate-core group search, which outperform the state-of-
the-art method [9] in terms of quality and efficiency.

3 PRELIMINARIES

In this section, we formally define the problem of intimate-
core group search and revisit the existing intimate-core
group search approaches. Table 2 lists the notations that we
will frequently use in this paper.

3.1 Problem Definition

Let GðV;E;wÞ be a weighted and undirected graph where V
is the set of nodes, E is the set of edge, and w is an edge
weight function. Let wðeÞ to indicate the weight of an edge
e 2 E. The number of nodes in G is defined as n ¼ jV j. The
number of edges in G is defined as m ¼ jEj. We denote the
set of neighbors of a node v by NGðvÞ ¼ fu 2 V : ðu; vÞ 2 Eg,
and the degree of v by degGðvÞ ¼ jNGðvÞj. When the context
is obvious, we drop the subscript such as using degðvÞ
instead of degGðvÞ. For example, Fig. 1a shows a weighted
graph G. Node v5 has two neighbors as NGðv5Þ ¼ fv4; v6g,
thus the degree of v5 is degGðv5Þ ¼ 2 in graph G. Edge
ðv2; v3Þ has a weight of wðv2; v3Þ ¼ 1. Based on the definition
of degree, we can define the k-core as follows.

Definition 1 (K-Core [10]). Given a graph G, the k-core is the
largest subgraph H of G such that every node v has degree at
least k inH, i.e., degHðvÞ � k.

For a given integer k, the k-core of graph G is denoted by
CkðGÞ, which is determinative and unique by the definition

TABLE 1
A Comparison of Existing Community Search Studies and Ours

TABLE 2
Frequently Used Notations
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of largest subgraph constraint. For example, the 3-core of G
in Fig. 1a has two components G1 and G2. Every node has at
least 3 neighbors in G1 and G2 respectively. However, the
nodes are disconnected between G1 and G2 in the 3-core
C3ðGÞ. To incorporate connectivity into k-core, we define a
connected k-core.

Definition 2 (Connected K-Core). Given graph G and
number k, a connected k-core H is a connected component of
G such that every node v has degree at least k in H, i.e.,
degHðvÞ � k.

Intuitively, all nodes are reachable in a connected k-core,
i.e., there exist paths between any pair of nodes. G1 and G2

are two connected 3-cores in Fig. 1a.

Definition 3 (Group Weight). Given a subgraph H � G, the
group weight of H, denoted by wðHÞ, is defined as the sum of
all edge weights inH, i.e., wðHÞ ¼P

e2EðHÞ wðeÞ.
Example 1. For the subgraph G1 � G in Fig. 1a, the group

weight of G1 is wðG1Þ ¼
P

e2EðG1Þ wðeÞ ¼ 1þ 3þ 5þ 2 þ
1þ 3 ¼ 15.

On the basis of the definitions of connected k-core and
group weight, we define the intimate-core group in a graph G
as follows.

Definition 4 (Intimate-Core Group [9]). Given a weighted
graph G ¼ ðV;E;wÞ, a set of query nodes Q and a number k,
the intimate-core group is a subgraph H of G if H satisfies fol-
lowing conditions:

� Participation. H contains all the query nodes Q, i.e.,
Q � VH ;

� Connected K-Core. H is a connected k-core with
degHðvÞ � k;

� Smallest Group Weight. The group weight wðHÞ is
the smallest, that is, there exists no H 0 � G achieving
a group weight of wðH 0 Þ < wðHÞ such that H

0
also

satisfies the above two conditions.

Condition (1) of participation makes sure that the inti-
mate-core group contains all query nodes. Moreover,
Condition (2) of connected k-core requires that all group
members are densely connected with at least k intimate
neighbors. In addition, Condition (3) of minimized group
weight ensures that the group has the smallest group
weight, indicating the most intimate in any kinds of edge
semantics. A small edge weight means a high intimacy
among the group. Overall, intimate core groups have sev-
eral significant advantages of small-sized group, offering
personalized search for different queries, and close rela-
tionships with strong connections.

The problem of intimate-core group search studied in this
paper is formulated in the following.

Problem Formulation. Given an undirected weighted
graph GðV;E;wÞ, a number k, and a set of query nodes Q,
the problem is to find the intimate-core group of Q.

Example 2. In Fig. 1a, G is a weighted graph with 12 nodes
and 20 edges. Each edge has a positive weight. Given two
query nodes Q ¼ fv8; v10g and k ¼ 3, the answer of inti-
mate-core group for Q is the subgraph shown in Fig. 1b.
This is a connected 3-core, and also containing two query

nodes fv8; v10g. Moreover, it has the minimum group
weight among all connected 3-core subgraphs containingQ.

3.2 Existing Intimate-Core Group
Search Algorithms

The problem of intimate-core group search has been studied
in the literature [9]. Two heuristic algorithms, namely, ICG-S
and ICG-M, are proposed to deal with this problem in an
online manner. No optimal algorithms have been proposed
yet because this problem has been proven to be NP-hard [9].
The NP-hardness is shown by reducing the NP-complete cli-
que decision problem to the intimate-core group search
problem.

Existing solutions ICG-S and ICG-M both first identify
a maximal connected k-core as a candidate, and then
remove the node with the largest weight of its incident
edges at each iteration [9]. The difference between ICG-S
and ICG-M lies on the node removal. ICG-S removes one
node at each iteration, while ICG-M removes a batch of
nodes at each iteration. Although ICG-M can significantly
reduce the total number of removal iterations required by
ICG-S, it still takes a large number of iterations for large
networks. The reason is that the initial candidate sub-
graph connecting all query nodes is the maximal con-
nected k-core, which may be too large to shrink. This,
however, is not always necessary. In particular, if there
exists a small connected k-core surrounding query nodes,
then a few numbers of iterations may be enough token
for finding answers. This paper proposes a local explora-
tion algorithm to find a smaller candidate subgraph. On
the other hand, both ICG-S and ICG-M apply the core
decomposition to identify the k-core from scratch, which
is also costly expensive. To improve efficiency, we pro-
pose to construct an index offline and retrieve k-core for
queries online.

4 INDEX-BASED LOCAL EXPLORATION

ALGORITHMS

In this section, we first introduce a useful core index and the
index construction algorithm. Then, we present the index-
based intimate-core group search algorithms using local
exploration.

4.1 K-Core Index

We start with a useful definition of coreness as follows.

Definition 5 (Coreness). The coreness of a node v 2 V ,
denoted by dðvÞ, is the largest number k such that there exists a
connected k-core containing v.

Obviously, for a node q with the coreness dðqÞ ¼ l, there
exists a connected k-core containing q where 1 � k � l;
meanwhile, there is no connected k-core containing q
where k > l. The k-core index keeps the coreness of all
nodes in G.

K-core Index Construction. We apply the existing core
decomposition [10] on graphG to construct the k-core index.
The algorithm is outlined in Algorithm 1. The core decompo-
sition is to compute the coreness of each node in graph G.
Note that for the self-completeness of our techniques and
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reproducibility, the detailed algorithm of core decomposi-
tion is also presented (lines 1-7). First, the algorithm sorts all
nodes inG based on their degree in ascending order. Second,
it finds the minimum degree in G as d. Based on the defini-
tion of k-core, it next computes the coreness of nodes with
degGðvÞ ¼ d as d and removing these nodes and their inci-
dent edges from G. With the deletion of these nodes, the
degree of neighbors of these nodes will decrease. For
those nodes which have a new degree at most d, they will
not be in (d+1)-core while they will get dðvÞ ¼ d. It contin-
ues the removal of nodes until there is no node has
degGðvÞ � d. Then, the algorithm back to line 2 and starts
a new iteration to compute the coreness of remaining
nodes. Finally, it stores the coreness of each vertex v in G
as the k-core index.

Algorithm 1. Core Index Construction

Input: A weighted graph G ¼ ðV;E; wÞ
Output: Coreness dðvÞ for each v 2 VG

1: Sort all nodes in G in ascending order of their degree;
2: while G 6¼ ;
3: Let d be the minimum degree in G;
4: while there exists degGðvÞ � d
5: dðvÞ  d;
6: Remove v and its incident edges from G;
7: Re-order the remaining nodes in G in ascending order of

their degree;
8: Store dðvÞ in index for each v 2 VG;

4.2 Solution Overview

At a high level, our algorithm of local exploration based on
k-core index for intimate-core group search (LEKS) consists
of three phases:

1) Tree Generation Phase: This phase invokes the shortest
path algorithm to find the distance between any pair
of nodes, and then constructs a small-weighted tree
by connecting all query nodes.

2) Expansion Phase: This phase expands a tree into a
graph. It applies the idea of local exploration to add
nodes and edges. Finally, it obtains a connected
k-core containing all query nodes.

3) Intimate-Core Refinement Phase: This phase removes
nodes with large weights, and maintains the candi-
date answer as a connected k-core. This refinement
process stops until an intimate-core group is obtained.

Fig. 2 shows the whole framework of our index-based
local exploration algorithm. Note that we compute the
k-core index offline and apply the above solution of online
query processing for intimate-core group search. In addi-
tion, we consider jQj � 2 for tree generation phase, and skip

this phase if jQj ¼ 1. Algorithm 2 also depicts our algorith-
mic framework of LEKS.

Algorithm 2. LEKS Framework

Input: G ¼ ðV;E; wÞ, an integer k, a set of query vertices Q
Output: Intimate-core groupH
1: Find a tree TQ for query nodes Q using Algorithms 3 or 4;
2: Expand the tree TQ to a candidate graph GQ in Algorithm 5;
3: Apply ICG-M [9] on graph GQ;
4: Return a refined intimate-core group as answers;

4.3 Tree Generation

In this section, we present the phase of tree generation. Due
to the large-scale size of k-core in practice, we propose local
exploration methods to identify small-scale substructures as
candidates from the k-core. The approaches produce a tree
structure with small weights to connect all query nodes. We
develop two algorithms, respectively based on theminimum
spanning tree (MST) andminimumweighted path (MWP).

Tree-based Construction. The tree-based construction has
three major steps. Specifically, the algorithm first generates
all-pairs shortest paths for query nodes Q in the k-core Ck

(lines 1-7). Given a path between nodes u and v, the path
weight is the total weight of all edges along this path
between u and v. It uses spathCkðu; vÞ to represent the short-
est path between nodes u and v in the k-core Ck. For any
pair of query nodes qi, qj 2 Q, our algorithm invokes the
well-known Dijkstra’s algorithm [33] to find the shortest
path spathCk

ðqi; qjÞ in the k-core Ck.
Second, the algorithm constructs a weighted graph Gpw

for connecting all query nodes (lines 3-8). Based on the
obtained all-pairs shortest paths, it collects and merges all
these paths together to construct a weighted graph Gpw

correspondingly.
Third, the algorithm generates a small spanning tree for Q

in the weighted graph Gpw (lines 9-22), since not all nodes or
edges are needed to keep the query nodes connected in Gpw.
This step finds a compact spanning tree to connect all query
nodes Q, which removes useless components to reduce
weights. Specifically, the algorithm starts from one of the
query nodes and does expand based on Prim’s minimum
spanning tree algorithm [33]. The algorithm stops when all
query nodes are connected into a component in Gpw. Against
the maximal connected k-core, our compact spanning tree has
three significant features: (1) Query-centric. The tree involves
all query nodes of Q; (2) Compactly connected. The tree is a
connected and compact structure; (3) Small-weighted. The
generation of minimum spanning tree ensures a small weight
of the discovered tree.

Path-Based Construction. Algorithm 3 may take expensive
computation for finding the shortest path between every

Fig. 2. LEKS framework for intimate-core group search.
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pair of nodes that are far away from each other. To improve
efficiency, we develop a path-based approach to connect all
query nodes directly. The path-based construction is out-
lined in Algorithm 4.

Algorithm 3. Tree Construction

Input: G ¼ ðV;E; wÞ, an integer k, a set of query vertices Q, the
k-core index
Output: Tree TQ

1: Identify the maximal connected k-core of Ck containing
query nodes Q;

2: Let Gpw be an empty graph;
3: for q1; q2 2 Q
4: if there is no path between q1 and q2 in Ck then
5: return ;;
6: else
7: Compute the shortest path between q1 and q2 in Ck;
8: Add the spathCk

ðq1; q2Þ between q1 and q2 into Gpw;
9: Tree: TQ  ;;
10: Priority queue: L ;;
11: for each node v in Gpw

12: distðvÞ  1;
13: Q Q� fq0g; dist ðq0Þ  0; L:pushðq0; distðq0ÞÞ;
14: while Q 6¼ ; do
15: Extract a node v and its edges with the smallest distðvÞ

from L;
16: Insert node v and its edges into TQ;
17: if v 2 Q then
18: Q Q� fvg;
19: for u 2 NGpwðvÞ do
20: if distðuÞ > wðu; vÞ then
21: distðuÞ  wðu; vÞ;
22: Update ðu; distðuÞÞ in L;
23: return TQ;

Algorithm 4. Path-Based Construction

Input: G ¼ ðV;E; wÞ, an integer k, a set of query vertices Q, the
k-core index
Output: Tree TQ

1: Identify the maximal connected k-core of Ck containing
query nodes Q;

2: Extract a query node q0 2 Q randomly;
3: Q Q� fq0g;
4: while Q 6¼ ; do
5: if there is no path between any query node q 2 Q and q0 in

Ck then
6: return ;;
7: else
8: Apply Dijkstra’s algorithm [33] to compute the shortest

path from q0 to the nearest q� 2 Q in Ck;
9: Add the spathCk

ðq0; q�Þ between q0 and q� into TQ;
10: q0  q�, Q Q� fq�g;
11: return TQ;

First, the algorithm identifies the k-core Ck (line 1). Then,
it randomly selects one query node q0 2 Q and removes q0
from Q (lines 2-3). Starting from q0, it applies the Dijkstra’s
algorithm [33] to find the shortest path from q0 to the nearest
query node q� 2 Q (lines 5-8). Note that the query node q� is
determined by the vertex q0. After that, it collects andmerges
the weighted path spathCk

ðq0; q�Þ into TQ to construct the tree

(line 9). Recursively, it treats q� as the new vertex q0 and starts
the shortest path search algorithm from q0, until all query
nodes in Q are traversed once in this way (line 10). Finally,
the algorithm returns the tree TQ connecting all query nodes
Q (line 11).

A Comparison of Tree-Based and Path-Based Generation
Methods. The tree-based generation in Algorithm 3 and path-
based generation in Algorithm 4 may generate different
results, i.e., different tree structures to connect all query verti-
ces Q. Let us consider an example graph G in Fig. 3a. The
weighted graph G has 7 vertices and 12 weighted edges.
Assume that the query vertices are Q ¼ fv1; v3; v5g in red in
Fig. 3a and k ¼ 3. The whole graph G is a 3-core. We apply
Algorithms 3 and 4 onG respectively. Algorithm 3 first finds
the shortest path between every pair of query vertices in Q.
We depict the edges along all such shortest paths in blue in
Fig. 3a. For example, the shortest path between v1 and v3 is
spathðv1; v3Þ ¼ fðv1; v2Þ; ðv2; v3Þg. Similarly, spathðv1; v5Þ ¼
fðv1; v4Þ; ðv4; v5Þg, spathðv3; v5Þ ¼ fðv3; v4Þ; ðv4; v5Þg. Next, the
three paths in blue are merged together to produce a
weighted graphGpw in Fig. 3a. Finally, the tree-based genera-
tion in Algorithm 3 constructs a spanning tree of TA shown in
Fig. 3b, which connects all query vertices fv1; v3; v4; v5g with
a group weight of 6. On the other hand, we apply the path-
based generation in Algorithm 4 on G for the same query Q.
First, Algorithm 4 randomly selects one vertex v5 for the
shortest path search. The nearest query node to v5 is v3. It
finds the shortest path spathðv5; v3Þ ¼ fðv5; v4Þ; ðv4; v3Þg.
Next, it starts from v3 in turns and finds the shortest path
spathðv3; v1Þ ¼ fðv3; v2Þ; ðv2; v1Þg. Finally, we merge the two
paths to construct the tree TB shown in Fig. 3c, which has a
groupweight of 7 different from the tree TA in Fig. 3b. In sum-
mary, our tree-based and path-based algorithms may gener-
ate two different trees to connectQ using different strategies.

Complexity Analysis. We analyze the complexity of Algo-
rithms 3 and 4. Assume that the k-core Ck has nk nodes and
mk edges where nk � n andmk � m.

For Algorithm 3, an intuitive implementation of all-pairs-
shortest-paths needs to compute the shortest path for every
pair nodes inQ, which takes OðjQj2mklognkÞ time. However,
a fast implementation of single-source-shortest-path algo-
rithm can compute the shortest path from one query node q 2
Q to all other nodes inQ, which takesOðmklognkÞ time. Over-
all, the computation of all-pairs-shortest-paths can be done in
OðjQjmklognkÞ time. In addition, the weighted graphGpw is a
subgraph of Ck, thus the size of Gpw is Oðnk þmkÞ � OðmkÞ.
Identifying the spanning tree of Gpw takes OðmklognkÞ time.
Overall, Algorithm 3 takes OðjQjmklognkÞ time and OðmkÞ
space.

For Algorithm 4, it applies jQj times of single-source-
shortest-path to identify the nearest query node. Thus,

Fig. 3. An example of tree generation for query nodes v1, v3 and v5 in
graph G. Tree TA is the spanning tree generated by Algorithm 3; tree TB

is the path-based tree generated by Algorithm 4.
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Algorithm 4 also takes OðjQjmklognkÞ time and OðmkÞ
space. In practice, Algorithm 4 runs faster than Algorithm 3
on large real-world graphs, which avoids the weighted tree
construction and all-pairs-shortest-paths detection.

4.4 Tree-to-Graph Expansion

In this section, we introduce the phase of tree-to-graph
expansion. This method expands the obtained tree from
Algorithms 3 or 4 into a connected k-core candidate sub-
graph GQ. It consists of two main steps. First, it adds
nodes/edges to expand the tree into a graph layer by layer.
Then, it prunes disqualified nodes/edges to maintain the
remaining graph as a connected k-core. The whole proce-
dure is shown in Algorithm 5.

Algorithm 5. Tree-to-Graph Expansion

Input: G ¼ ðV;E;wÞ, a set of query vertices Q, k-core index, TQ

Output: Candidate subgraph GQ

1: Identify the maximal connected k-core of Ck containing
query nodes Q;

2: L0  fvjv 2 VTQg; L0  L0 ;
3: i 0; GQ  ;;
4: while GQ ¼ ; do
5: for each v 2 Li do
6: for each u 2 NCk

ðvÞ and u =2 L0 [ Liþ1 do
7: Liþ1  Liþ1 [ fug;
8: L0  L0 [ Liþ1; i iþ 1;
9: Let GL be the induced subgraph of G by the node set L0;
10: Generate a connected k-core of GL containing query

nodes Q as GQ;
11: return GQ;

Algorithm5 first gets all nodes in TQ and puts them intoL0

(line 2). Let Li be the vertex set at the ith depth of expansion
tree, andL0 be the initial set of vertices. It uses L

0 to represent
the set of candidate vertices, which is the union of all Li set.
The iterative procedure can be divided into three steps (lines
4-10). First, for each vertex v in Li, it adds their neighbors into
Liþ1 (lines 5-7). Next, it collects and merges fL0; . . . ; Liþ1g
into L0 and constructs a candidate graph GL as the induced
subgraph ofG by the node set L0 (lines 8-9). Finally, we apply
the core decomposition algorithm on GL to find the con-
nected k-core subgraph containing all query nodes, denoted
as GQ. If there exists no such GQ, Algorithm 5 explores the
ðiþ 1Þth depth of expansion tree and repeats the above pro-
cedure (lines 4-10). In the worst case, GQ is exactly the maxi-
mum connected k-core subgraph containingQ. However,GQ

in practice is always much smaller than it. The time complex-
ity for expansion is OðPlmax

i¼0
P

v2V ðGiÞ degðvÞÞ, where lmax is
the iteration number of expansion in Algorithm 5.

Example 3. Fig. 1a shows a weighted graph G with query
Q ¼ fv8; v10g and k ¼ 3. We first identify the maximal con-
nected 3-core containing query nodes Q. Since there is
only 2 query nodes, the spanning tree is same as the short-
est path between them, such that TQ ¼ spathC3

ðv8; v10Þ.
Next, we initialize L0 as L0 ¼ fv8; v10g and expand nodes
in L0 to their neighbors. The expansion procedure is
shown in Fig. 4a. We put all nodes in Fig. 4a into L0 and
construct a candidate subgraphGL shown in Fig. 4b. Since

GL is a 3-core connected subgraph containing query
nodes, the expansion graphGQ isGL itself.

4.5 Intimate-Core Refinement

This phase refines the candidate connected k-core into an
answer of the intimate-core group. We apply the existing
approach ICG-M [9] by removing nodes to shrink the candi-
date graph obtained from Algorithm 5. This step takes
Oðm0log "n

0Þ time, where " > 0 is a parameter of shrinking
graph [9]. To avoid query nodes deleted by the removal pro-
cesses of ICG-M, we develop a mechanism to protect impor-
tant query nodes.

Protection Mechanism for Query Nodes. As pointed by [34],
[35], [36], the k-core structure may collapse when critical
nodes are removed. Thus, we precompute such critical
nodes for query nodes in k-core and ensure that they are not
deleted in any situations. We use an example to illustrate
our ideas. For a query node q with an exact degree of k, it
means that if any neighbor is deleted, there exists no feasi-
ble k-core containing q any more. Thus, q and all q’s neigh-
bors are needed to protect. For example, in Fig. 4b, assume
that k ¼ 3, there exists degGðv10Þ ¼ k. The removal of each
node inNGðv10Þwill cause core decomposition and the dele-
tion of v10. This protection mechanism for query nodes can
also be used for k-core maintenance in the phrase of tree-to-
graph expansion.

5 WC-INDEX-BASED QUERYING ALGORITHMS

In this section, we propose to keep the node corenesses and
edge weights into an index, called the Weighted-Core index
(WC-index). We present the data structure of WC-index and
an index construction method in Section 5.1. Leveraging on
WC-index and our framework of LEKS, we develop two
new algorithms of tree-to-graph expansion and intimate-
core refinement respectively in Sections 5.2 and 5.3.

Overview. In weighted graphs, various weights of edges
reflect different strengths of an intimate relationship between
two nodes. However, the previous k-core index in Section 4.1
keeps no records of this importantly useful information of
edge weights. To make use of edge weights, we propose a
newWC-index to keep the node corenesses and edge weights
in an integrated way.With the help ofWC-index, we propose
new search strategies to improve the LEKS framework in two
ways: (1) we get a high-quality candidate graph with a few
vertices and a smaller group weight; (2) we develop an inti-
mate-core refinement strategy to achieve a good trade-off
between efficiency and effectiveness. Equipped with these
two new algorithms, our framework LEKS is able to find inti-
mate-core groups with much smaller weights using less
computational cost, which scales well with large graphs in
practice.

Fig. 4. Tree-to-graph expansion.
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5.1 Weighted-Core Index

A simple k-core index that keeps the coreness of all nodes, is
proposed in Section 4.1. However, this index does not make
use of importantly useful information of edge weights.
Given the problem objective of finding an intimate-core
group with a small weight, it motivates to design an effec-
tive index integrating the node corenesses and edge weights
together as follows.

WC-Index Data Structure. We construct the WC-index for
each vertex in graph G. Given a vertex v 2 V , the WC-index
of v consists of two components: the coreness dðvÞ and a
neighbor-weight set denoted by NWðvÞ ¼ fðu;wðu; vÞÞ : u 2
NðvÞg. The coreness dðvÞ indicates the maximum value of k
such that there exists a k-core containing v in G. The neigh-
bor-weight set of NWðvÞ is a list of sorted neighbors u 2
NðvÞ and their corresponding edge weights of wðv; uÞ. The
neighbors in NWðvÞ are sorted in the increasing order of
their edge weights. For example, Table 3 shows the data
structure ofWC-index in graph G in Fig. 1a.

WC-Index Construction. We first apply Algorithm 1 on
graph G to compute the coreness of all nodes in V . For each
vertex v 2 V , we simply sort its vertex neighbors in the
ascending order of their corresponding edge weights.
Finally, we construct the WC-index structure, consists of tri-
ple elements of ½v; dðvÞ; NWðvÞ� for all vertices v 2 V . The
rational of sorting neighbors in terms of edge weights aims
at the efficient retrieval of good candidate vertices with
small weights. This idea is intuitive but shown to be very
useful in developing two newly effective expansion and
refinement algorithms for finding high-quality answers in
Sections 5.2 and 5.3.

5.2 WC-Index-Based Expansion

Based on WC-index, we propose a tree-to-graph expan-
sion called WC-index-based expansion, which uses two
expansion strategies of k-breadth expansion and 1-depth
expansion.

Motivation. Algorithm5 implements a tree-to-graph expan-
sion in LEKS, which expands a tree TQ to a candidate graph
GQ. However, the expansion procedure has two major draw-
backs. First, Algorithm 5 expands from nodes in TQ by adding
all their neighbors. It may add toomany new vertices intoGQ,
especially when the expanding nodes have high degrees.
Moreover, the newly added edges may have large edge
weights, leading to a bad candidate graph GQ with a large

number of nodes and a large groupweight. To refine this can-
didate graph GQ, it requires a large number of removal itera-
tions in the refinement phase, which incurs inefficiency.
Second, Algorithm 5 iteratively expands level by level until it
generates a connected k-core in a BFS manner. To overcome
these drawbacks, we use k-breadth expansion to add k neigh-
bors with the smallest edge weights, but not all neighbors.
Beside this BFS expansion, we design 1-depth expansion to
fast get a connected k-core in a DFS manner. Overall, the pur-
pose ofWC-index-based expansion is to find a candidate sub-
graphwith a small weight quickly.

A Two-Level Expansion of k-Breadth and 1-Depth.
WC-index-based expansion consists of two expansion strate-
gies: k-breadth expansion and 1-depth expansion. First, the
k-breadth expansion adds into GQ with k neighbors with the
smallest edge weights, but not all neighbors. Such k neigh-
bors can be obtained by an efficient retrieval ofWC-index. In
practice, the expanded GQ is difficult to form a connected
k-core directly. For leveraging on the k-breadth expansion
only is not enough, we design another strategy of 1-depth
expansion. The 1-depth expansion starts from one neighbor
node X with the smallest weight and further expands one
more depth to another neighbor of X with the smallest
edge weight. Integrating both strategies, our method of
WC-index-based expansion is able to find a candidate sub-
graphwith a small weight quickly.

Algorithm 6.WC-index-Based Expansion

Input: WC-index, an integer k, a set of query vertices Q, the
spanning tree TQ

Output: Candidate subgraph GQ

1: for vertex v 2 VTQ do
2: Extract a set of sorted neighborsNCk

ðvÞ ¼ fu 2 NðvÞ :
dðuÞ � kg fromWC-index;

3: L0  fvjv 2 VTQg; L0  L0 ;
4: i 0;Di  ;; Gi  ;; GQ  ;;
5: while GQ ¼ ; do
6: for each v 2 Li do
7: count 0; L0  L0 nDi;
8: for each u 2 NCk

ðvÞ and u =2 L0 do
9: count countþ 1;
10: if count > k then
11: goto Step 6;
12: if u =2 Liþ1 then
13: Liþ1  Liþ1 [ fug;
14: if count ¼ 1 then
15: Let u0 be the first item inNCk

ðuÞ n ðL0 [ Liþ1Þ;
16: Diþ1  Diþ1 [ fu0g;
17: L0  L0 [ Liþ1 [Diþ1; i iþ 1;
18: Let Gi be the induced subgraph of G by the node set L0;
19: Generate a connected k-core of Gi containing query nodes

Q as GQ;
20: return GQ;

Algorithm. The whole procedure of WC-index-based
expansion is shown in Algorithm 6. Based on the WC-index,
the algorithm first extracts a set of sorted neighbors NCk

ðvÞ
with the coreness of k for all vertices in TQ (lines 1-2). It iter-
ative expands TQ to a connected k-coreGQ using three steps:
k-breadth expansion, 1-depth expansion, and candidate validation
(lines 3-20). At the ith iteration, let Li be the node set for

TABLE 3
WC-index of Graph G in Fig. 1a
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k-breadth expansion, and Di be the node set for 1-depth
expansion. First, the k-breadth expansion adds the k neigh-
bors with smallest weights into Liþ1 (lines 5-13). Second, the
1-depth expansion adds only one neighbor with the smallest
weights intoDiþ1 (lines 14-16). Third, it validates the qualifi-
cation of the expanded graph. The algorithm collects all can-
didate nodes of L0, which is formed by all nodes of Li and
Di (line 17). LetGi represents a candidate induced subgraph
formed by L0. The algorithm stops when it finds a qualified
connected k-core GQ of Gi (lines 18-19).

Example 4. We apply WC-index-based expansion in Algo-
rithm 6 on graph G in Fig. 5a for Q ¼ fqg and k ¼ 3. Algo-
rithm 6 expands from query vertex q using two strategies
of 3-breadth expansion and 1-depth expansion. It obtains the
sorted neighbors of q in connected 3-core from the
WC-index, i.e., NWðqÞ ¼ fðv4; 1Þ; ðv2; 2Þ; ðv1; 2Þ; ðv5; 8Þ; ðv6; 8Þg.
First, the 3-breadth expansion starts from q to add nodes v4,
v2, and v1 into the candidate graph, as shown in Fig. 5b. Sec-
ond, the 1-depth strategy adds vertex v3, which is the clos-
est neighbor to v4. Finally, the inducted subgraph H of G
formed by node L0 ¼ fq; v1; v2; v3; v4g is a connected 3-core
containing q shown in Fig. 5a. It only takes two simple steps
to generate a small connected 3-core H efficiently. How-
ever, if we do not use this two-level expansion but adopt
the full BFS expansion, a bad result will be generated. First,
it collects all q’s neighbors NðqÞ ¼ fv1; v2; v4; v5; v6g. The
induced subgraph ofG byNðqÞ [ fqg is not a 3-core. Next, it
expands one more hop and generates the candidate graph,
which is larger than H generated by our WC-index-based
expansion.

5.3 WC-Index-Based Refinement

After the WC-index-based expansion from a tree to a graph,
we need to shrink the graph into an intimate-core group
with a small weight. Beside the protection mechanism
shown in the intimate-core refinement in Section 4.5, we pro-
pose a new method of WC-index-based refinement. The
WC-index-based refinement consists of three parts: 1) a new
removal order for node deletion based on the minimal
weight; 2) coarse-grained binary deletion for large graphs;
and 3) fine-grained careful refinement for small graphs.

Minimal Weight Removal. The ICG-M algorithm [9] per-
forms the intimate-core refinement by deleting nodes with
the largest node weights, where the aggregated node
weight of v is defined as the sum of all incident edge
weights. However, the aggregated node weight cannot
reflect the importance of nodes, especially lots of edges
incident to a node is not belong an intimate-core group. To
address this limitation, we define a new definition of mini-
mal weight as follows.

Definition 6 (Minimal Weight). Given a graphH and a node
v, the minimal weight of v is defined as the minimum weight of
all edges incident to v in H, denoted by xHðvÞ, i.e., xHðvÞ ¼
minu2NH ðvÞwðu; vÞ.

The minimal weight of a node represents the strongest
strength of connection between this node to the graph. If a
node has a large minimal weight, all edges have large
weights, indicating weakly intimate relationships between
this node to the graph.

Coarse-Grained/Fine-Grained Deletion Strategies. Different
from deleting a constant proportion of nodes by ICG-M [9] at
each iteration, we propose two deletion strategies: coarse-
grained deletion for large graphs and fine-grained deletion
for small graphs. The new strategies have the significant
advantages of efficiency (fast identifying small-sized intimate
groups by coarse-grained deletion) and effectiveness (finding
high-quality intimate groups by fine-grained deletion). For
large graphs, we propose to use a binary deletion by remov-
ing a half of nodes from graph, which can quickly reduce the
graph size and group weight. For small graphs, we propose
to use a careful refinement by removing one node from graph
each time. This fine-grained deletion avoids deleting impor-
tant nodes that may lead the graph to be a disqualified
answer, which ensures a good answer of intimate-core group
with a small weight.

Based on the minimal weight removal and coarse-
grained/fine-grained deletion strategies, we propose the
WC-index-based refinement in Algorithm 7. It illustrates the
procedure of refining the candidate graph GQ to the answer
H. It computes the protected vertices Vp in advance as
shown in Section 4.5. The algorithm has two key steps: sort-
ing nodes by their minimal weights and deletion of nodes
with large weights. It first gets the sorted neighbor set NðvÞ
(line 1). The Tag equals to ’False’, indicating that the algo-
rithm uses the binary deletion; otherwise, it uses the careful
deletion (line 2). Then, it computes the minimal weight
xGQ
ðvÞ for all nodes with the help of WC-index (lines 4-6). It

sorts nodes in the descending order of minimal weights
(line 7). Based on the graph size, the algorithm chooses to
use binary deletion (lines 8-17) or careful deletion (lines 18-
25). For a large graph with more than g nodes, it applies the
binary deletion, which deletes a half of nodes with the larg-
est minimal weights (lines 8-15). After deletion, the algo-
rithm maintains the remaining graph as a connected k-core
containing Q (line 12). If the binary deletion is not applica-
ble to current graph, we set the Tag as ’True’ (lines 16-17).
For a small graph with no greater than g nodes, it deletes
one node from graph at each iteration (lines 18-25).

Summary.Wegive a summary of the proposed techniques of
WC-index, WC-index-based expansion, and WC-index-based
refinement. Three new techniques play essentially important
roles in our LEKS framework. WC-index integrates an
advanced index of node corenesses and edge weights,
which offers the efficient retrieval for two important
phases of expansion and refinement in LEKS. In the tree-
to-graph expansion phase, WC-index-based expansion can
find a small candidate of intimate-core group using a two-
level expansion of k-breadth and 1-depth. In the refinement
phase, WC-index-based refinement removes nodes using a
new metric of minimal weight and develops two deletion

Fig. 5. An example of WC-index-based expansion.
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strategies of coarse-grained/fine-grained refinements for
large/small graphs. Equipped with these new techniques,
our LEKS framework can deal with intimate-group queries
efficiently and find high-quality answers.

Algorithm 7.WC-index-Based Refinement

Input: WC-index, an integer k, a set of query vertices Q, candi-
date subgraph GQ, protected vertices Vp

Output: The intimate core groupH
1: Get the sorted neighborsNðvÞ usingWC-index;
2: Tag False;
3: while there are nodes to be removed do
4: for each v 2 VGQ

n Vp do
5: Let u be the first node inNGQ

ðvÞ;
6: xGQ

ðvÞ  wðv; uÞ;
7: Sort all nodes in VGQ

n Vp in the descending order by
xGQ
ðvÞ;

8: if jVGQ
n Vpj > g and Tag = False then

9: Copy the range ð0; jVGQ
n Vpj=2Þ of VGQ

n Vp to Vdelete;
10: for each v 2 Vdelete do
11: Remove v from GQ;
12: Maintain GQ as a connected k-core containing Q;
13: if GQ ¼ ; then
14: Restore the graph GQ;
15: Vp  Vp [ fvg;
16: if the number of removed nodes in Vdelete is less than

jVdeletej=2 then
17: Tag True;
18: if jVGQ

n Vpj � g or Tag ¼ True then
19: for each v 2 VGQ

n Vp do
20: Remove v from GQ;
21: Maintain GQ as a connected k-core containing Q;
22: if GQ ¼ ; then
23: Restore the graph GQ;
24: Vp  Vp [ fvg;
25: else goto Step 3;
26: H  GQ;
27: returnH;

6 EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed algorithms. All algorithms are implemented in Java.

Datasets.Weuse six real-world datasets in experiments. The
wiki-vote and Flickr datasets are publicly available from [37].
The edge weight represents the existence probability of an
edge. A smaller weight indicates a higher possibility of the
edge to existing. The other four ground-truth datasets are from
Stanford Large Network Dataset Collection.1 We assign each
edge within communities with a random edge weight in
ð0; 0:2�, and each edge outside communities with a random
edgeweight in ½0:3; 0:9�. The statistics of all datasets are shown
in Table 4. Themaximum coreness dmax ¼ maxv2V dðvÞ.

Algorithms.We compare four algorithms as follows.

� ICG-M: is the state-of-the-art approach for finding
intimate-core group using bulk deletion [9].

� LEKS-tree: is our index-based search framework in
Algorithm 2 using Algorithm 3 for tree generation.

� LEKS-path: is our index-based search framework in
Algorithm 2 using Algorithm 4 for tree generation.

� WC-index: is our WC-index-based search framework
in Algorithm 2 using Algorithm 4 for tree generation,
Algorithm 6 for expansion and Algorithm 7 for
refinement.

We first evaluate all algorithms by comparing the run-
ning time and intimate-core group weight. The less running
time costs, the more efficient the algorithm is. Smaller the
group weight of the answer, better effectiveness is. To fur-
ther evaluate the approaches, we apply them on datasets
with ground-truth communities and discuss the precision,
recall, and F1-score of the results. We also compare the size
and construction time to analyze the k-core index and
WC-index.

Queries and Parameters. For real-life datasets, we evaluate
all competitive approaches by varying parameters k and
jQj. We randomly generate 100 sets of queries with different
k and jQj. We set jQj ¼ 5 and k ¼ 6 by default. For ground-
truth datasets, the queries are randomly generated from
ground-truth communities. We set different k for different
sized graphs with ground-truth. For three small graphs
com-Amazon, com-DBLP, and com-Youtube, k is set as the
smallest value of coreness of the query nodes. For a large
graph com-LiveJournal and the generated dense graphs, we
apply Algorithm 4 to generate spanning-tree TQ and select
the smallest coreness of the top ten nearest neighbors of
nodes in TQ as the value of k. Moreover, we set the parame-
ter g ¼ 100 to decide coarse-grained/fine-grained deletions
for WC-index by default. Note that g calculates the number
of vertices in the candidate graph excluding the query
nodes and protected vertices. We treat the running time as
infinite and the group weight as N=A if one algorithm can-
not finish within 24 hours.

Exp-1: Varying k. Fig. 6 shows the group weight of four
algorithms by varying parameter k on three datasets. We
vary the number of query nodes k in {2, 4, 6, 8}. The results
show that our WC-index method always gets a smallest
group weight. The local search methods LEKS-tree and
LEKS-path can find intimate groups with lower group
weights than ICG-M, for different k. LEKS-path performs
better than LEKS-tree on com-Youtube. LEKS-path and
LEKS-tree achieve similar performances on Flickr and com-
LiveJournal. Fig. 7 shows that LEKS-path has a good perfor-
mance for most cases, and runs significantly faster than
ICG-M. WC-index may take more time than other methods
on small graphs since the fine-grained deletion strategy
requires more iterations to get high-quality answers with
smaller group weights. However, WC-index is clearly
much more efficient than all other methods on large
graphs due to its coarse-grained deletion strategy and
two-level expansion strategy. As ICG-M takes more than

TABLE 4
Network Statistics

1. https://snap.stanford.edu/data/
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24 hours for one query on com-LiveJournal, we denote its
running time as infinity.

Exp-2: Varying jQj. We evaluate the efficiency and quality
performance of all algorithms for different queries by vary-
ing jQj. We vary the number of query nodes jQj in {1, 2, 4, 8,
16, 32, 64}. Fig. 8 reports the group weight results. With the
increased jQj, WC-index can always achieve smaller group
weights than other methods, especially on large graphs com-
Youtube and com-LiveJournal as shown in Figs. 8b and 8c.
LEKS-tree and LEKS-pathmethods have similar performan-
ces, which are better than ICG-M. Fig. 9 shows the results of
running time by varying jQj. WC-index always outperforms
other methods using a smaller running time for different jQj
in most cases. Moreover, the efficiency performance of
WC-index is slightly stable. With the increased Q, all meth-
ods generally cost more running time on Flickr in Fig. 9a.
ICG-M cannot finish the query processing tasks within 24
hours on the large graph com-LiveJournal in Fig. 9c.
WC-index may take extra efforts for fine-grained node dele-
tion in small graphs and run fast on large graphs by two-
level expansion strategy and coarse-grained deletion. Note
that we test jQj from 1 to 32 on com-Youtube as there are no
ground-truth communities with enough vertices.

Exp-3: Quality Evaluation of Candidate Intimate-Core Groups.
This experiment evaluates the subgraphs of candidate inti-
mate-core groups by all methods, in terms of vertex size and
group weight. ICG-M takes the maximal connected k-core
subgraph containing query nodes as an initial candidate, and
iteratively shrinks it. LEKS-tree and LEKS-path both gener-
ate an initial candidate subgraph locally expanded from a
tree, and then iteratively shrink the candidate by ICG-M.
WC-indexmethod uses theWC-index-based two-level expan-
sion strategy to construct the candidate subgraphs and then
refines the graph depend on minimal weight. We report the

results of the first 5 removal iterations and the initial candi-
date at the #iteration of 0. Fig. 10a shows that the group
weight of candidates by our methods is much smaller than
ICG-M. Fig. 10b reports the vertex size of all candidates at
each iteration. The number of vertices in the candidate group
by ourmethods at the #iteration of 0, is even less than the ver-
tex size of candidate group by ICG-M at the #iteration of 5.
The WC-index can always achieve good candidate graphs
with the smallest groupweights.

Exp-4: Running Time and Quality Evaluation on Ground-
Truth Datasets. We compare the four algorithms on four
large graphs with ground-truth communities by setting
default jQj ¼ 8. As shown in Table 5, ICG-M algorithm
always gets the worst results both on running time and
quality. ICG-M cannot finish within 24 hours on large graph
com-LiveJournal. LEKS-tree achieves similar F1-scores to
LEKS-path but takes longer time. The WC-index method
achieves the best performance especially for large graphs in
terms of efficiency and effectiveness.

Exp-5: Evaluation of All Methods on Com-DBLP by Varying
jQj. Figs. 11a and 11b respectively show the running time
and group weight comparison on all algorithms by varying
jQj in {2, 4, 8, 16}. Our methods always have a better perfor-
mance than ICG-M. WC-index takes less time than other
methods in most cases but takes more time when k ¼ 2 since
it needs more cost to obtain high-quality answers.WC-index
can always get answers with the smallest group weights for
different k. Figs. 11c, 11d, and 11e report the quality evalua-
tion by comparing the precision, recall, and F1-score. Our
methods always have higher precision and F1-score than
ICG-M. The WC-index method has the largest value on all
these three matrices than others.

Exp-6: Index Construction.We evaluate the construction of
the simple k-core index and theWC-index by comparing the
index size and generation time in Table 6. Here, we use
k-core to indicate the k-core index, which only keeps the
coreness of all vertices. The indexes are built off-line and
stored in memory. We can see that the size of WC-index is
about 1.4 times of the original graph size jGj, which is com-
pact and very competitive. This confirms that WC-index has
OðmÞ space complexity. On the other hand, the construction

Fig. 6. Effectiveness evaluation of all methods by varying k.

Fig. 7. Efficiency evaluation of all methods by varying k.

Fig. 8. Effectiveness evaluation of all methods by varying jQj.

Fig. 9. Efficiency evaluation of all methods by varying jQj.

Fig. 10. The size and weight of intimate-groups on com-DBLP varied by
#iterations.
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time of WC-index takes a little bit longer time than the con-
struction time of k-index, which is is about 1.3 times of
k-core index construction. Therefore, as shown in Figs. 7, 9
and Table 5, WC-index-based approach is several orders of
magnitude faster than ICG-M without using any index and
also k-core index-based LEKS-tree and LEKS-path, espe-
cially on large graphs.

Exp-7: Varying h for the h-depth Expansion. To validate the
effectiveness of 1-depth expansion strategy used in
WC-index, we evaluate WC-index using h-depth expansion,
which explores h vertices with the smallest edge weights at
each level of h-depth from queries’ neighbors. We vary the
parameter h from 0 to 16. For h ¼ 0, WC-index does not
invoke any depth expansion and only uses the k-breadth
expansion. Fig. 12 reports the results of running time and
group weight by varying the h-depth of WC-index on two
ground-truth datasets com-Youtube and com-LiveJournal.
As we can see, WC-index uses no depth expansion for h ¼ 0
takes more time than using the h-depth expansion for h � 1.
This verifies that the depth-based expansion can identify a
connected k-core easily using less iterative exploration of
vertices, which saves much time in practice. For h � 1, the

running time increases a little bit with increasing h. On the
other hand, the group weight of all results keeps stable for
different depth expansions as they use the same refinement
strategy. As a result, we use the 1-depth expansion in the
implementation ofWC-index.

Exp-8: Varying g in WC-index Refinement Phase. In this
experiment, we evaluate the performance of WC-index by
varying g on large graphs com-Youtube and com-LiveJour-
nal. We vary g from 0 to 400. The results are reported in
Fig. 13. When g ¼ 0, WC-index achieves a larger group
weight in Fig. 13b. This because that WC-index only uses
the coarse-grained deletion for g ¼ 0, which verifies the

TABLE 5
Running Time and Quality Evaluation on Ground-Truth Datasets

Fig. 11. Evaluation of all methods on com-DBLP by varying jQj.

Fig. 12. Evaluating h-depth expansion by varying h.

Fig. 13. Varying g on com-Youtube and com-LiveJournal.

TABLE 6
Index Size (in Megabytes) and Index Construction Time

(in Seconds)
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effectiveness of fine-grained deletion strategy. When g

increases from 25 to 400, both the corresponding results
of running time and group weight remain stable. This
indicates that our default choice of g ¼ 100 is suitable on
these real datasets.

Exp-9: Scalability Test on Dense Graphs With Ground-Truth
Communities. To evaluate the efficiency and quality robust-
ness, we conduct the scalability test of all algorithms on
graphs with different densities. We use four graphs with
ground-truth communities and increase the density by add-
ing a percentage of new edges. We add 0% 	 100% percent-
age new edges w.r.t. the original graph size jEj into graphs,
where the new edges are proportionally distributed over
the inside-community and outside-community. Figs. 14 and
15 report the results of group weight and running time,
respectively. It shows that our WC-index algorithm has bet-
ter performance than others as the graph density increases.
LEKS-path and LEKS-tree can achieve competitive effi-
ciency results to WC-index in Figs. 15a, 15b, and 15c but
they cannot finish the query task within 24 hours on the
large graph comp-LiveJournal in Fig. 15d.

Exp-10: Scalability Test on Power-Law Graphs by Varying
Graph Densities. We also conduct the scalability test of all
algorithms on pow-law graphs with different densities.
We randomly generate a series of power-law graphs,
which have a graph density jEjjV j from 2 to 32. Each graph
has 100,000 vertices. For queries, we set the parameter k ¼
4 and jQj ¼ 1. Fig. 16 reports the running time and group
weight results of four methods. Our approach WC-index

consistently achieves the smallest running time and group
weight among all methods, indicating that WC-index can
well handle different densities of graphs in a robust way.
Fig. 16b shows one interesting phenomenon that WC-index
achieves smaller group weights with the increased density,
which may be caused by the existence of tightly dense
communities.

Exp-11: Case Study on the DBLP Network. We conduct a
case study of intimate-core group search on the collabora-
tion DBLP network [9]. Each node represents an author,
and an edge is added between two authors if they have co-
authored papers. The weight of an edge ðu; vÞ is the recipro-
cal of the number of papers they have co-authored. The
smaller weight of ðu; vÞ, the closer intimacy between authors
u and v. We use the query Q ¼{“Huan Liu”, “Xia Hu”,
“Jiliang Tang”} and k ¼ 4. We apply LEKS-path and ICG-M
to find 4-core intimate groups for Q. The results of
LEKS-path and ICG-M are shown in Figs. 17a and 17b
respectively. The bolder lines of an edge represent a smaller
weight, indicating closer intimate relationships. Our LEKS
method discovers a compact 4-core with 5 nodes and 10
edges in Fig. 17a, which has the group weight of 1.6, while
ICG-M finds a subgraph with 12 nodes, which has a larger
group weight of 16.7 in Fig. 17b. We can see that nodes on
the right side of Fig. 17b has no co-author connections with
two query nodes “Xia Hu” and “Jiliang Tang” at all. This
case study verifies that our LEKS-path can successfully find
a better intimate-core group than ICG-M.

Fig. 14. Effectiveness evaluation on ground-truth graphs for different graph density. Here,%jE�j is the percentage of new adding edges.

Fig. 15. Efficiency evaluation on ground-truth graphs for different graph density. Here,%jE�j is the percentage of new adding edges.

Fig. 16. Evaluation on power-law graphs for different graph density.
Fig. 17. Case study of intimate-core group search on the DBLP network.
Here, query Q ¼{“Huan Liu”, “Xia Hu”, “Jiliang Tang”} and k ¼ 4.
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7 CONCLUSION

This paper presents a local exploration k-core search (LEKS)
framework for efficient intimate-core group search. LEKS
generates a spanning tree to connect query nodes in a com-
pact structure, and locally expands it for intimate-core group
refinement. Moreover, we design a WC-index, which keeps
the node corenesses and edge weights. Based on WC-index,
we propose two WC-index-based algorithms of expansion
and refinement in LEKS, which accelerates the search effi-
ciency of intimate-core group search over large graphs.
Extensive experiments on real-world weighted graphs show
that our approaches achieves a higher quality of answers
using less running time, in comparison with state-of-the-art
methods.
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